Real-time visualisation and analysis of tera-scale datasets

Christopher Fluke

<u>Amr Hassan</u> (Swinburne; PhD student), David Barnes (Monash University), Virginia Kilborn (Swinburne)

Thank you to the SPS15 organizers for the invitation to speak

CRICOS provider 00111D

Motivation

The Petascale Astronomy Data Era

MORE of the sky MORE often MORE pixels MORE wavelengths MORE data MORE ...

MORE computational work MORE time passes before you can do...

MORE science

Desktop Astronomy

How long are YOU prepared to wait for an "interactive" response at your desktop?

Volume	Memory	Local disk			
Gigascale	Yes	Yes			
Terascale	No	Yes (slow)			
Petascale	No	No			
V					
Scalable Remote service					

Australian SKA Pathfinder: Astronomy's Petascale Present

- 36 antennas
- Phased-array feeds
- Wide field of view
- 700 MHz 1.8 GHz

2012-13: BETA → 2014: Full science

"Hazards along the road include kangaroos, cattle, sheep, goats, goannas, eagles, emus, wild dogs...." http://www.atnf.csiro.au/observers/visit/guide_murchison.html#directions

Credit: Swinburne Astronomy Productions

WALLABY: The ASKAP HI All-Sky Survey

B.Koribalski (ATNF), L.Staveley-Smith (ICRAR) + 100 others...

- Redshifted 21-cm HI
- ~0.5 million new galaxies
- 75% of sky covered
- $z = 0.26 \sim 3$ Gyr look-back

$$u = \sqrt{rac{1 - v_{
m los}/c}{1 + v_{
m los}/c}} \nu_0$$
Observed
Emitted
Line-of-sight velocity

WALLABY: The ASKAP HI All-Sky Survey

B.Koribalski (ATNF), L.Staveley-Smith (ICRAR) + 100 others...

(Line-of-sight velocity)

387 HIPASS cubes: 1721 x 1721 x 1024 = 12GB Data: R. Jurek (HIPASS;ATNF)

Likely data products:

4096 x 4096 x 16384 channels

~ 1TB per cube

[x1200 cubes]

Can we support real-time, interactive visualisation and data analysis?

Funding = AAL/Education Investment Fund + Swinburne Peak: ~130 Tflop/s 100 x NVIDIA Tesla C2070 + 21 x NVIDIA Tesla M2090

Credit: Gin Tan

Graphics Processing Units (GPUs) are...

Massively parallel

Programmable*

Computational co-processors

Providing 10x-100x speed-ups

For many scientific problems

At low cost (TFLOP/\$)

(But you can't use existing code)

[* CUDA, OpenCL, PyCUDA, Thrust, OpenACC, CUFFT, cuBLAS]

The future of computing is massively parallel

Is my algorithm suitable for a GPU? See: Barsdell et al. MNRAS (2010), Fluke et al. PASA (2011)

Why types of problems are GPUs good for?

Inherent data parallelism

E.g. pixel-by-pixel operations (SIMD)

High arithmetic intensity

$$\mathbf{y} = \begin{pmatrix} 1 - \gamma & 0 \\ 0 & 1 + \gamma \end{pmatrix} \mathbf{x} - \sigma_c \mathbf{x} - \sum_{i=1}^{N_c} m_i \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^2} \quad \mathbf{N}_s$$

>> 1

What are GPUs being used for in astronomy? (ADS abstract search: 1 February 2012) 40 36 32 115+ abstracts O(40) application areas 28 SWIN **Mostly single-GPU** •NE 24 Fluke (2011), arXiv1111:5081 20 16 Early adopters 12 ("low-hanging fruit"?) 8 4 0 2004 2006 2007 2008 2009 2010 2011 2012 **N-body** (21) Adaptive Optics (10) Signal Processing (11)

Data Mining (5)

Visualisation (10)

Hydro/MHD

(8)

Volume Rendering via Ray Casting

Ray castingSamplingShading
Transfer functionCompositingData parallelism + high arithmetic intensityImage: Wikimedia Commons

Framework enhancements (Hassan et al. 2012, submitted)

Supports arbitrary transfer function = quantitative visualisation or data analysis

By the numbers: put the whole cube in memory

48 x HIPASS

- 4 x 4 x 3
- 6884 x 6884 x 3072
- 542.33 GB

96 GPUs

- 90 Tesla C2070
- 6 Tesla C2090
- 6 GB/GPU
- 43392 cores

Lustre file system

- 113 strips
- 546 sec = 9 min load

Visualisation: Scalability Testing

			/	
Configuration	Facility	Maximum size	Tested	
32 node – 64 GPU (3GB/GPU) Minimum 128 CPU cores	CSIRO GPU Cluster	140 GB	Yes	
64 node – 128 GPU (3GB/GPU) Minimum 256 CPU cores	CSIRO GPU Cluster	281 GB	Yes	> 10 fps
32 node – 64 GPU (6GB/GPU) Minimum 128 CPU cores	gSTAR	300 GB	Yes	J
48 nodes – 96 GPU (6GB/GPU) Minimum 192 CPU cores	gSTAR	540 GB	Yes	~ 7fps
64 nodes – 128 GPU (6GB/GPU) Minimum 256 CPU cores	Upgrade (2012?)	650 GB	Planned	
128 nodes – 256 GPU (6GB/GPU) Minimum 512 CPU cores	Upgrade (2013?)	1.3 TB	No	
			WA	LLABY: 2014!

Analysing **0.5 Tbyte** (on 96 GPUs)

Task	Description	Time
Histogram	Visit each data point once	~4 sec
Global mean and standard deviation	Summarizing whole dataset into single value(s)	~2 sec
Global median	Multiple iterations to convergence (Torben's method)	~45 sec
3D spectrum tool	Quantitative data interaction: click for spectrum	20 msec
	D Spectrum Viewer	*

Interactive data thresholding

Future directions?

- Large-format displays
- Temporal data
- Polarisation (Stokes)
- New transfer functions
 - E.g. medical imaging

8000×8000 pixel volume rendering of the HIPASS dataset on the CSIRO Optiportal at Marsfield, NSW. Data: R. Jurek (ATNF) from 387 HIPASS cubes. Image: C.Fluke

Conclusions

- Terascale real-time, interactive visualisation and data analysis?
 - Achievable with GPU clusters
 - Communication bound
- Wish list
 - More memory/GPU
 - More GPU/node (PCIe limit)
 - Faster inter-node communication
- Exciting parallel future!